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LIQUID CRYSTALS, 1989, VOL. 6, No. 3, 293-302 

Analysis of threshold field effects in smectic C phases 

by G. DERFEL 
Institute of Physics, Technical University of Lodi, 93-005 t o d i ,  Poland 

(Received 26 January 1989; accepted I 1  April 1989) 

A qualitative analysis of the threshold behaviour of plane smectic C layers in 
external fields is made. All possible relative orientations between the liquid crystal, 
the boundaries and the field vector are considered. Arbitrary material constants 
are assumed in the uniaxial approximation. The conditions for first- and second- 
order transitions are given. 

1. Introduction 
Field effects in smectic C phases, considered first by Rapini [l], are in practice 

limited to field-induced reorientation of the director. The distortions of the smectic 
layers are too small to be detected. Deformation of the director field is possible owing 
to the rotation of the director around the normal to the smectic layers. This effect has 
been considered both theoretically [2-51 and experimentally [3, 51. In the theoretical 
description an approximation concerning the elastic constants was used: B, = 
B2 = B,, B,, = 0. In this paper the more general case is considered; arbitrary values 
of the elastic constants are assumed and all possible positions of the smectic layers are 
considered. Application of a magnetic field is treated. The most practical case of the 
field vector normal to the boundary plates is discussed separately and illustrated by 
means of the electric field. It is assumed that the material is uniaxial and the corre- 
sponding anisotropies xa = xII - xL and E, = E~~ - E~ are small. Both signs of the 
anisotropies are considered. 

The threshold character of the field-induced reorientation has been investigated by 
means of an analysis of the expansion of the layer free energy in a power series in the 
director deformation angle. The proper truncation of the series was guaranteed by 
application of theorems from catastrophe theory [6] .  According to Thom’s theorem, 
any family of smooth functions of n variables and r parameters is equivalent to one 
of a few archetypal forms. All but two of these involve a dependence on parameters 
and are called ‘catastrophes’. The catastrophe predicts the number and kind of critical 
points of the function considered, i.e. the points at which the first derivative vanishes. 
The behaviour of the system depends on the degeneracy of the critical point, i.e. on 
the number of the successive higher derivatives that are zero at this point. The 
most interesting phenomena occur in the vicinity of the degenerate critical point. 
Thresholds or discontinuities are the characteristic features of this behaviour. If the 
potential energy of the system has the form of a catastrophe, we can find the character 
of the equilibrium states and their evolution under variation of the parameters. There 
are seven elementary catastrophes resulting if r < 4. In this paper the so-called 
‘butterfly’ catastrophe is used, its properties have been described in a previous paper 
[7], where the same approach was applied to some cases of field effects in nematic 
layers. The results are qualitative, owing to the topological character of catastrophe 
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294 G. Derfel 

theory. They are valid only locally, i.e. the number of solutions and their disposition 
in the vicinity of the critical point can be revealed. The numerical values are only 
approximate. 

In $2 the geometry of the system is defined and field-induced deformations are 
considered. The results are described in $3. Section 4 contains some concluding 
remarks. 

2. The geometry of the system 
The geometry of the system is shown in figure 1. The flat smectic layers with 

uniform director orientation and tilt angle w are contained between two parallel plates 
separated by a distance d. Their positions are defined by the normal K, which always 
lies in the ( y ,  z) plane and makes an angle /? with the substrate. The director is 
confined to the surface of a cone and is determined by the angle +(z), its initial value 
is +o. The difference +(z)  - +o = <(z) is the measure of the director deviation. It is 
useful to represent /? as a sum of two angles: 8, between the projection of no on the 
( y ,  z) plane and the substrate; and u, between this projection and K. The three angles 
+o, u and w are related by 

tan u 
cos 4 0  = - tan w' 

A magnetic field of strength H is applied in the direction determined by the angles y 
and 6 ,  which are measured relative to the ( y, z )  plane and K respectively. 

J 
X 

Figure 1. The geometry of the smectic C layer in an external field. 
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Thresholdfield effects in smectic C 295 

In this geometry the free-energy density is given by 

(b, cos2 4 cos2 p + b, sin2 4 cos2 B + sin2 f l  - b,, cos 4 sin 28) 

[sin w sin 6 cos (4 - y )  + cos w cos 61’ , 1 n2h 
d sin2 w 

-- 

where reduced quantities are used: bl = B, /B3, b2 = B2/B3, b13 = B13/B3, h = (H/Ho)2 
and Ho = (n/d sin w )  ( B 3 / ~ a ) 1 / 2 .  Small deformations are assumed and so the director 
distribution in the slab can be approximated by the function 

4(4  = 4 0  + e m  cos (nzld),  (3) 
where 5, is the amplitude of the deformation in the middle plane of the slab. Using 
this result, we can expand the free energy density in equation (2) in a Taylor series in 
the vicinity of 5, = 0. Integration over z gives the free energy per the unit area of the 
sample (accurate to within a constant): 

where the coefficients ai are 

nB3h sin 6 
a, = -- [sin w sin 6 sin 2(4,, - y) + 2 cos w cos 6 sin (4,, - y ) ] ,  

d sin w (5 )  

a2 = * (h, cos2 4o COS’ B + b, sin2 b0 cos2 /3 + sin2 f i  - b,, cos I$,, sin 28 4d 

(6)  

+ - - [2 sin w sin 6 cos 2(40 - y )  + 2 cos w cos 6 cos (40 - y ) ]  , I h sin 6 
2 sin w 

and for i 2 3 

(7) I + 2 cos 0 cos 6 cos ( 4 0  - y ) ]  

if i is  even, and 

(- l)(i+l)/2 [2’-,(b, - b, )  sin 240 cos’ /? + b,, sin c $ ~  sin 2b] 
I [(i - 2)!!]’d ai = . 

I + 2 cos w cos 6 sin (40 - y ) ]  
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296 G.  Derfel 

if i is odd. These coefficients depend on the material parameters b,, b,, bI3 ,  o and the 
angles &, p, as well as the field strength and direction h, 6 ,  y. It is possible to find some 
relations between these parameters, and for any physically acceptable values of them 
the coefficients a,, . . . , a, vanish, although a, is non-zero. This means that there exist 
degenerate critical points at 5, = 0 for each particular set of parameters, since a, is 
proportional to the ith derivative of the free-energy function. 

According to the theorems of catastrophe theory, terms of order higher than six 
in expansion (4) can be disregarded. The energy G,  truncated in this way, can be 
written in the form of the butterfly catastrophe 

f = &x6 + t a x 4  + 3bx3 + icx ’  + dx, (9) 
where the transformation of variables 

is used and the coefficients are 

- 5a: + 24a4a:a, - 72a3a,ai + 144a2a2 

a: - 6a4a:a, + 27a,a:ai - 108a2a,a~ + 324a,a: 

c =  72ai(6 I a, (11 c) 

( 1 1  d)  d =  
324ai(6 I a6 

The application of this standardization is useful only if b = d = 0, i.e. if a, = 
a3 = a, = 0. The catastrophe manifold then reduces to the form 

x = 0, (12) 

x4 + ax2 + c = 0, (13) 

a = 4a4/(6 I u , ~ ) ~ ~ ~ ,  (14) 

c = 2a2/(6 I a,l)Ii3, (15) 
X = (6 I a,1)1’65m. (16) 

where 

The surfaces defined by equations (1 2) and (1 3) represent the 5 ,  values for which the 
total free energy G has extremes. For every set of parameters of the system, a point 
in the (a, c) plane is defined. Under variation of the field strength these points form 
a trajectory, which determines the required solutions. The threshold field strength is 
reached if c becomes zero. If the trajectory intersects the line c = 0 for a 2 0 then 
the transition is second-order. In the opposite case a first-order transition occurs. In 
general, if b and dare non-zero, it is more convenient to work with the untransformed 
expansion. 

It may happen that a, < 0. The resulting catastrophe is called the ‘dual butterfly’. 
Its properties are analogous to the standard one, but minima and maxima are 
interchanged and the senses of the a, h, c and d axes are reversed. 
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3. Results 
The deformation of the director field has threshold character if the total free 

energy in the undistorted state is extreme, i.e. if a, = 0 for any field strength. This 
defines two situations in which the critical point is realized: 

4 0  = Y (17) 

cos (& - y) = -cot 0 cot 6. (18) 

and 

The system remains undeformed until the threshold field, determined by the condition 
a2 = 0, is reached. The shape of solutions t, as a function of the external field in the 
neighbourhood of the threshold depends on the values of further coefficients in the 
expansion and can be of five types. 

1. 

2. 

3. 

4. 

5. 

Symmetrical without a bistability range if a3 = a, = 0 for any field together 
with a, > 0 at the threshold, which is equivalent to 

b = d = 0, a 2 0  f o r c = O .  (19) 
The transition is second-order. Both signs of the deformation are equivalent. 
Curve 1 in figure 2 illustrates such a result. 
Symmetrical with a bistability range if 

b = d = 0, a < O  f o r c = O .  (20) 
The transition is first-order and hysteresis is possible (see curve 2 in figure 2) .  
Asymmetrical with a bistability range and one deformed state possible at the 
threshold if a3 # 0 (see figure 3, curve 1). 
Asymmetrical with a bistability range and two equally probable deformed 
states if a3 = 0, a4 < 0 and a, # 0 at the threshold (see figure 4(a)). 
Asymmetrical without bistability if a3 = 0, a, 2 0 and a, # 0 at the threshold. 
The transition is second-order in this particular case (see figure 4 (b)). 

n 

-0 

\ 

* 
0 

e 
E 

0 1 H /H, 
2 

Figure 2. The deformation angle 5, as a function of the external field strength; bl = 1.4, 
b2 = 1.2, bI3 = 0.2, w = 15" (material constants are common to all figures). 
y = (Po = 0" and B = 0'. Curve 1: 6 = - 15O, type 1. Curve 2: 6 = -60", type 2. The 
insert shows the corresponding trajectories in the (a, c) plane. The arrows indicate 
increasing field strength. Full lines represent minima, dotted lines maxima. 
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0 1 2 H/  Ho 

Figure 3. The deformation angle 5, as a function of the external field strength; y = 0" and 
& = 30'. Curve 1: 6 = 0" and 6 = -76.94" (H 1 no), type 3. Curve 2: 0 = 2" and 
6 = -74.94'. Curve 3: 6 = 5" and 6 = -71.94". Curve 4: 6 = -2" and 
6 = - 78.94'. The field vector is perpendicular to the boundary plates. The dashed line 
represents unavailable minima. Inessential maxima are not shown. 

0.5 1 1 1 5  

W H O  
Figure 4. The deformation angle 5, as a function of the external field strength; y = +,, = 45" 

and 6 = 24.53'. (a) 6 = -60°, type 4. (b) 6 = -20', type 5. 

3.1. Deformations in a magnetic field 
3.1 .l. Positive diamagnetic anisotropy 

(a) $o = y. If $o = y ,  the three vectors H, K and no lie in the same plane. In  
general, a3 and a5 do not vanish and a deformation of type 3 is realized. The threshold 
field is given by 

h, = - 
sin w (b, cos2 $o cos2 fi + b, sinZ 4o cos2 p + sin' 8 - bI3 cos $o sin 28) 

sin 6 cos (6 - w )  

(21) 

w - + x < 6 < 0  or  w + + x < d < n .  (22) 

The condition h, > 0 yields restrictions on 6: the transition takes place only if 
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The additional condition 

together with 

min (6,, o - )x) < 6 < max (6,, w - tx) (24) 

give a transition of type 4.  If equation (23) is satisfied together with the relation 
opposite to (24), 

(25) max (6,, w - tx) < 6 < )x or - - in  < 6 < min (6,, w - i n ) ,  

or equivalently 

max (6, - x, w - +x) < 6 < - i n  or i n  < 6 < min (6, + n, w + )x), 
(25‘) 

then type 5 is realized. In these expressions 6, is determined by 

tan 6, = -{[4(b,  - b , )  cos 2b0 + b2 sin2 $o - b ,  cos2 $0] cos2 /I 

+ sin2 /? + b13 cos b0 sin 2p) cot w 

x [4 cos2 p (b2 cos2 $,, + b, sin2 $o) + 4 sin2 B - 2bI3 cos $o sin 2fl-I. 

(26) 

If equation (23) is valid, this formula takes the form 

(27) 
(4b2 - 3 b l )  cos2 p + sin2 fl f b, ,  sin 28 

4b2 cos2 p + 4 sin2 p - 2bI3 cos $o sin 2p 
tan 6, = - cot w 

As a consequence of requirements (22), the inequalities (25)  and (25‘) are reduced to 

(28) max (d,, w - in) < 6 < 0 or max (6, - x, w - 3x) < 6 < -n. 

Symmetrical solutions can be obtained in one of the following situations 

0)  4 0  = 0; 
(ii) p = i n ;  

(iii) $o = f x  and p = 0; 
(iv) $o = )n and b13 = 0; 
(v) b,  = b, and 

(vi) b,  = 6 ,  and bl3 = 0. 
= 0; 

The transition is of type 1 if the relations (28) are satisfied. A discontinuous defor- 
mation of type 2 occurs if inequality (24) is true. In case (i) 6, is determined by 
equation (27). For cases (ii)-(vi) this equation takes the simple form 

tan 6, = -$ cot w, (29) 

which was obtained in [3] in the single-constant approximation. 

(b )  H I no. If the vector H is perpendicular to the initial director no then relation 
(18) is obeyed. The threshold field is given by 

. (30) 
6 ,  cos2 Cp0 cos2 B + b, sin2 $o cos’ B + sin’ fl - bI3 cos $o sin 28 

sin2 6 sin2 - y )  
h, = 
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300 G. Derfel 

In general, a type 3 deformation occurs. However, if the following rather complicated 
relation is satisfied, 

(31) 
(6, - b, )  sin 240 + 2 tan j sin 4o 

2(bl cos’ 4, + b, sin2 4, + tan’ p - 2bI3 tan p cos &) ’ cot ( 4 0  - Y) = 

then types 4 or 5 are realized. Type 4 can occur if 

tan’ p [sin’ (40 - y) - 31 + 2 tan p b13 cos 4o [3 - 5 sin’ (40 - y ) ]  

+ [3(b, + b,) + b ,  sin’ 4o + b, cos’ 40] sin2 ($o - y) 

- 3(b, cos2 4o + b, sin’ 40) < 0, (32) 

and type 5 in the opposite case. 
Symmetrical solutions can be obtained in the following configurations if 6 = $71: 

(vii) p = 
(viii) /3 = 0 and $o = 4. and y = 0 (h, = b2); 

(ix) 4o = 3. and y = 0 and bl3 = 0 (h, = b2 cos2 f i  + sin2 p); 
(x) p = 0 and 4o - y = 3. and b, = b, = bo (h,  = b,); 
(xi) 4o - y = 371, b, = b2 = b, and bl3 = 0 (h, = b, cos2 p + sin2 p); 

(xii) 4o = 0 and y = $n (h, = b, cos2 p + sin2 p - b13 sin’ p). 

and 4, - y = +IT (h, = 1); 

In cases (vii)-(xi) the transition is of type 1 since a > 0 for c = 0. In case (xii) type 
2 is possible if 

(33) tan2 p - b,, tan p + b, < 0. 

This relation results from conditions (20) and can take place if the rather unlikely 
inequality 

b:3 > 4b2 (34) 

is obeyed. 

3.1.2. Negative diamagnetic anisotropy 
Negative diamagnetic anisotropy can be introduced into the coefficients of the 

expansion by changing the sign before the reduced field h.  As we have seen, the 
expansion can be limited to sixth degree. 

The configurations with H I no are stable and give negative values of h,. 
Therefore the critical points at r,,, = 0, which should be considered, occur if 4o = y. 
The threshold field can be obtained from equation (21) after a change of sign. The 
deformationoccursonlyif0 < 6 < w + )nor -n < 6 < o - )n.Thecoefficient 
a4 is always positive. In general, the deformation is of type 3; type 5 can be realized 
if equation (23) is obeyed. 

Symmetrical solutions are present in configurations (i)-(vi). All of them are 
continuous. 

3.2. Application of an electric9eld 
In the case when an electric field is present the boundary plates play the role of 

electrodes, therefore y = 0 and 6 = p - )n. The reduced electric field, defined as 
e = (E/E0)’, where Eo = (n/d sin W ) ( B ~ / E ~ E , ) ’ ’ ~ ,  should be used instead of h. 
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3.2.1. Positive dielectric anisotropy 

field is 
The solutions are symmetric in two cases. If (bo = 0 then a = w and the threshold 

sin o (b, cos’ p + sin’ p - b,, sin 2p) 
sin 8 cos p e, = (35)  

The deformation is possible for a suitable initial orientation of the smectic layers 
determined by the angle 8: 

o < e < + n - o  or - - 7 ~ < e < - w - ; ~ .  (36)  
The transition is continuous if 

max (6, - o + +n, 0)  < 8 < in - w or max (6, - w - in, -n) 

< 0 <  - + n - o  (37)  

(38)  
where 6, is given by equation (27) .  If (bo = +n, 8 = 0 and a = 0, the transition is 
continuous and starts at e, = b,. 

The other configurations, for which E I no, i.e. cos (bo = cot o tan a, 6 = 
(x - i n  and 8 = 0, correspond to a planar orientation of director and tilted smectic 
layers. The deformation is of type 3 and the threshold is 

and discontinuous if 

min (6, - o + in, 0) < 8 < max (6, - w + in, 0) ,  

e, = b, + cot’ 4o (tan’o - 2b,, tan w + b,). (39)  

Type 4 deformation can be achieved if 

b,, tan o - b, 
tan’ o - b,, tan o’ COS’ 4 0  = 

tan’ a [sin2 (40 - y) - 31 + 2 tan ab,, cos q50 [3 - 5 sin’ (40 - y ) ]  

+ [3(b ,  + b2)  + b, sin’ do + b, cos’ 40] sin’ (40 - y) 

- 3(b,  cos’ $o + b, sin’ 40) < 0. (41) 

The transition is continuous if equation (40) is valid together with the opposite sign 
of inequality (41). However, the condition (40) can be satisfied if tan o > b, /b,,, 
which seems to be impossible for real materials. 

3.2.2. Negative dielectric anisotropy 
The only critical point can occur if 4o = 0. The threshold is given by 

sin w (b, cos2 j3 + sin’ p - b,, sin 2 p )  
sin (w - p) cos p e, = 9 

and is positive for -o - in < 0 < 0 or 
always of type 1, since a, remains positive. 

- o < 8 < n. The deformation is 

4. Concluding remarks 
The results obtained in the approach presented have a qualitative character. The 

values of 5 ,  are approximate but acceptable in the vicinity of critical points. 
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302 G.  Derfel 

The approximation is due to limiting the +(z) function to the first term of a Fourier 
series, (equation (3)), and to the truncation of the Taylor series of G at the lowest 
possible order. The function +(z) has a topological form suitable for qualitative 
description of the real director distribution, but insufficient for numerically exact 
solutions, especially at high field strength. However, if the next term of Fourier 
expansion, for instance of the form $,,, cos (3nz/d),  is added to +(z) then the free- 
energy density becomes a function of two variables c,,, and $,,, . Its Taylor expansion 
contains many more terms than in the single-variable case. Determination of the 
catastrophe, which is equivalent to such a function, is also much more laborious, 
whereas the results remain approximate. Since all the interesting qualitative features 
of the final solutions can be obtained by using the simple form (3), it seems reasonable 
to exclude higher terms during calculations. 

The configurations considered in $3 give rise to a critical behaviour due to a, = 0. 
If this condition is not satisfied then there is no threshold. The deformation starts at 
h = 0 and increases smoothly. In some cases hysteresis is also possible; examples of 
such behaviour are shown in figure 3. 

The values of particular elastic constants of the smectic C phase have not been 
determined experimentally. We may suppose that relations between them are similar 
to the relations between corresponding elastic constants of nematics describing the 
analogous field effects. According to this assumption, the values of b, and b, were 
postulated, a small value of b,, was chosen. 

In some configurations considered in this paper two minima of the free energy 
exist at the same field strength. In such situations the nematic liquid-crystal layers 
behave according to the delay convention, i.e. they remain in one equilibrium state 
while this state exists. In systems in which fluctuations prevent the stay in metastable 
state another possibility is realized; the transition occurs when the free energies of 
both states are equal. This principle is called the Maxwell convention. In the smectic 
C phase, the agreement with the delay principle was found experimentally by 
Meirovitch et al. [3]. Occurrence of both types of behaviour has been suggested in 
experiments performed by Pelzl et al. [5].  The results presented here were obtained 
according to the delay convention. The detailed calculation of the threshold field due 
to the Maxwell convention is not possible, as the energies of the deformed states are 
known only approximately. The approach presented should be valid for layers in 
which the deviations of director orientation, able to give rise to switching to another 
equilibrium state, are absent. 
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